BTeV Detector Elements and Front End Electronics (a quick review)

f

David Christian November 2, 2000

The BTeV Detectors

- Silicon pixels
- Forward tracker = straw chambers and silicon strip detectors
- Muon chambers
- RICH photo detectors
- Electromagnetic calorimeter

Muon chambers: ~80K channels

Front-end = U. Penn. ASD (ASDQ designed for CDF COT) "Amplifier Shaper Discriminator"

Latch/zero suppression/r/o not yet defined? --- proposal says serialization is at the octant level.

http://www.hep.vanderbilt.edu/~wjohns/res/btev/proto2/index.html

A close up of prototype muon tubes.

Each station contains 4 views with 2 (offset by ½ diam) tubes per view.

We've performed some tests on a new improved plank. The stainless tubes are soldered in, the endplates are "tight" in an EMI sense, the tubes are terminated, our amplifying and discriminating electronics (which is a card using the 3 ASDQ's from the COT electronics at CDF) are shielded, and our readout is done using simple twisted flat.

Straw Chamber – Baseline Design

- Wire readout at both ends (glass bead at center)
- •3 layers per view
- •3 views per station
- •>66000 straws in total

ATLAS TRT straw cutter

Straws:

Development effort recently reorganized.

Proposal calls for use of U.Penn. ASD, but does not specify which one. Choices include ASDQ, made for CDF COT in Maxim Cp, & ASDBLR, planned for ATLAS TRT – being prototyped in DMILL.

Requirement for TDC is "easy," but no existing TDC can be read out fast enough for BTeV.

Silicon Strip Detectors

- •Near the beam pipe, the density of tracks is too high for straws to handle (occupancy, radiation damage)
- •Central 24 cm x 24 cm (OR MORE???) will be covered with SSD's (central hole for the beam pipe)
- •100 μm pitch → No problem with high occupancy (40x straw tube segmentation)

Silicon Strips:

Front end chip: to be designed & fabricated by Milano. baseline = AC coupled single sided sensors binary readout as similar to pixel r/o chain as possible.

Hybrid pixel detectors

- Sensors & readout "bump bonded" to one another
- •Principle of operation is similar to SSD's same signal (less noise)

FPIX1

FPIX1 bonded to ATLAS test sensor

FPIX2 Roadmap

- 0.25μ CMOS
 - (5 metal [6 possible], 2.5V)
- Design for 2 vendors ("lowest common denominator" design rules):
 - "CERN" Very favorable contract, but problems with US Gov. restrictions
 - Taiwan Semiconductor Manufacturing Corp (TSMC) Available through MOSIS
- <u>PreFPIX2-T (1999)</u> TSMC 0.25μ CMOS
 - •New analog front end, with new leakage current compensation strategy
 - •8 comparators per cell (3-bit FADC); no EOC logic included
 - •Array size = 2×160
 - Bench tests (radiation exposure)
- PreFPIX2-I (2000) "CERN" 0.25μ CMOS
 - Same front end
 - •Complete "core" including new, simplified EOC & R/O (self-triggered only)
 - •Array size = 18 x 32
 - Bench tests
- PreFPIX2-T2 (2000) TSMC 0.25μ CMOS (submitted; due back in early December)
 - New programming interface
 - •Internal DAC's no external currents required; only external voltages are 2.5V & ground.
 - •Array size = 18 x 64
- FPIX2 (2001) 0.25μ CMOS Final BTeV R/O chip!!??

RICH = Ring Imaging Cerenkov Counter

A charged particle traveling faster than the speed of light in a medium (e.g. a gas) emits light at a characteristic angle (an electromagnetic shock wave) --- This is Cerenkov light.

Baseline Cerenkov Photodetector = Hybid Photo Diode: vacuum device consisting of:

- photocathode on inside of vacuum window
- 20 KVolt accelerating potential
- silicon pad detector in vacuum
- signal = 1 $\gamma \rightarrow$ 1 e⁻ \rightarrow (20,000 eV/3.62 eV per e-h pair) charge loss $\approx 5000 \text{ e}^{-}$

Baseline = DEP HPD w/163 channels per tube (front end chips outside of vacuum).

The BTeV Electromagnetic Calorimeter

Lead tungstate crystal:

- •Very dense (showers don't spread allows high segmentation)
- Radiation hard
- Fast scintillator

Electromagnetic shower:

 $\gamma \rightarrow e^+e^-$; $e^- N \rightarrow e^- \gamma N$; $\gamma e^- \rightarrow \gamma e^-$;...

Each electron deposits energy in the crystal, some Of which is transformed into scintillation light & Detected by the photo multiplier tube.

Traditional (low gain) base (voltage divider)

~10 pe's per MeV (incident) into a 2" pmt

EMCAL

~24K Lead-tungstate crystals coupled to PMT's QIE's located outside of high rad area

Don't know where zero-suppression occurs.

Possible commonality:

- Pixels/SSD's: Chip control, I/O specs
- Straws/Muon: ASD's
- RICH/Muon: Latches, zero suppression method
- More???